A koszekán származéka - Mi ez, meghatározása és fogalma

Az f (x) függvény koszantjának deriváltja megegyezik ennek a deriváltjával, a függvény koszantusával és f (x) kotangensével. Mindez szorozva -1-gyel.

Hasonlóképpen, az f (x) függvény koszantjának deriváltja is megegyezik ennek deriváltjával, f (x) koszinusszal, és ugyanezen függvény négyzetes szinusa között.

Így a következő egyenértékűségünk van:

Emlékeznünk kell arra, hogy a derivált matematikai függvény, amelyet az egyik változó változásának a másikhoz viszonyított sebességeként határozunk meg. Vagyis hány százalékkal növekszik vagy csökken az egyik változó, ha egy másik is nőtt vagy csökkent.

A függvény származékát a következőképpen határozzuk meg:

Egy másik fogalom, amire emlékezni kell, az a koszant. Ez egy derékszögű háromszögre alkalmazott trigonometrikus függvény. Így az x szög koszekánsza megegyezik az x-szel szemben lévő láb közötti hipotenusz arányával. Vagyis ez a szinuszra fordított arány.

Az egyik oldala derékszögű háromszöget alkot, amelyet hipotenusznak nevezünk, amely a derékszög (90º) előtt van. Míg a másik két kisebb oldalt, az éles szögekkel szemben, lábnak nevezzük.

Példák a koszant származékára

Vizsgáljuk meg a kozekáns származék néhány kidolgozott példáját:

Most nézzünk meg egy másik példát egy koszant négyzettel:

A befejezés előtt meg kell jegyezni, hogy az u'-t az első alakja helyettesítette a koszekánttal és a kotangenssel, és nem a koszinussal és a szinuszszal. Ez az egyenlet egyszerűsítése érdekében.

Népszerű Bejegyzések

Argentínában fogy a hús?

Az argentin kormány megtiltotta az argentin hús kivitelét. Ennek az intézkedésnek a célja? A nemzeti kereslet ellátása. Így...…

Mit találtak ki a görögök?

✅ Mit találtak ki a görögök? | Mi ez, jelentése, fogalma és meghatározása. Tagadhatatlan az ókori Görögország hatása a nyugati kultúrára. Ebben az értelemben,...…