Kocka gyökének származéka

A kocka gyökének származéka megegyezik a 2/3-os kitevőhöz emelt alap háromszorosával. Ez abban az esetben, ha a bázis ismeretlen.

A fentiek bemutatásához emlékeznünk kell arra, hogy egy kocka gyökér egyenértékű egy olyan exponenciális függvénnyel, amelynek kitevője 1/3. Tehát emlékezünk arra, hogy egy hatvány deriváltja megegyezik az exponensre emelt bázis mínusz 1 szorzóval.

Matematikai szempontból a következőképpen magyarázhatjuk:

Még a fentieket is általánosíthatnánk minden gyökér esetében:

Visszatérve a kocka gyökérhez, ha ez befolyásol egy függvényt, akkor a származtatást a láncszabály szerint a következőképpen kell kiszámítani: f '(x) = nyn-1Y '. Vagyis hozzá kell adnunk az előző számításhoz a kocka gyökér által érintett függvény deriváltját.

Kocka gyök derivált példák

Lássunk néhány példát arra, hogyan lehet kiszámítani egy kocka gyökerét:

Most nézzünk meg egy példát egy kicsit nehezebben:

Népszerű Bejegyzések

Delegált - mi ez, definíció és fogalom

✅ Küldött | Mi ez, jelentése, fogalma és meghatározása. Teljes összefoglaló. A delegálás az a személy által végrehajtott cselekvés, amelyen keresztül felelősséget ruház át ...…