Variációs együttható - mi ez, meghatározása és jelentése

A variációs együttható, más néven Pearson-féle variációs együttható, egy statisztikai mérőszám, amely tájékoztat minket egy adatsor relatív eloszlásáról.

Vagyis arról tájékoztat minket, mint más diszperziós mértékeket, hogy egy változó sokat mozog-e, keveset, többet vagy kevesebbet, mint egy másik.

Variációs együttható képlet

Számítását úgy kapjuk meg, hogy a szórást elosztjuk a halmaz átlagának abszolút értékével, és a jobb megértés érdekében általában százalékban fejezzük ki.

  • X: változó, amelyre a varianciát ki kell számítani
  • σx: Az X változó szórása.
  • | x̄ |: Ez az X változó átlaga abszolút értékben, x̄ ≠ 0 értékkel

A variációs együttható a CV vagy r betűkkel fejezhető ki, a kézikönyvtől vagy a használt betűtípustól függően. Képlete a következő:

A variációs együtthatót a különböző populációkhoz tartozó adathalmazok összehasonlítására használják. Ha megnézzük a képletét, azt látjuk, hogy figyelembe veszi az átlag értékét. Ezért a variációs együttható lehetővé teszi számunkra a diszperziós mérést, amely kiküszöböli két vagy több populáció átlagának lehetséges torzulásait.

Rang

Példák a variációs együttható használatára a szórás helyett

Íme néhány példa a diszperzió mértékére:

Különböző dimenziójú adatkészletek összehasonlítása

Meg akarjuk vásárolni az osztály 50 tanuló magassága és súlya közötti diszperziót. A magasság összehasonlításához métereket és centimétereket használhatunk mértékegységként, a súlyra pedig kilogrammot. Ennek a két eloszlásnak a szórás felhasználásával történő összehasonlításának nem lenne értelme, mivel két különböző kvalitatív változót próbálunk megmérni (a hosszúság és a tömeg egy mértékét).

Hasonlítsa össze a halmazokat nagy különbséggel az átlagok között

Képzelje el például, hogy meg akarjuk mérni a bogarak és a vízilovak súlyát. A bogarak súlyát grammban vagy milligrammban, a vízilovak súlyát általában tonnában mérik. Ha mérésünkhöz a bogarak súlyát tonnára konvertáljuk úgy, hogy mindkét populáció azonos skálán legyen, akkor a szórás mértékének diszperziójának mérése nem lenne megfelelő. A tonnában mért átlagos bogártömeg olyan kicsi lenne, hogy ha a szórást alkalmaznánk, akkor alig lenne diszperzió az adatokban. Ez hiba lenne, mivel a különböző bogárfajok súlya jelentősen eltérhet.

Példa a variációs együttható kiszámítására

Vegyük figyelembe az elefántok és az egerek másik csoportját. Az elefántpopuláció átlagos tömege 5000 kilogramm, szórása pedig 400 kilogramm. Az egérpopuláció átlagos tömege 15 gramm, szórása pedig 5 gramm. Ha összehasonlítjuk mindkét populáció diszperzióját a szórás felhasználásával, azt gondolhatjuk, hogy az elefántok populációjánál nagyobb a diszperzió, mint az egereknél.

Azonban mindkét populáció variációs együtthatójának kiszámításakor rájöhetnénk, hogy éppen ellenkezőleg.

Elefántok: 400/5000 = 0,08
Egerek: 5/15 = 0,33

Ha mindkét adatot megszorozzuk 100-mal, akkor az elefántok variációs együtthatója csak 8%, míg az egereké 33%. A populációk és azok átlagos súlya közötti különbség következtében azt látjuk, hogy nem a legnagyobb szórású populáció a legnagyobb szórással.

Megbízhatósági intervallumLineáris korrelációs együttható

Népszerű Bejegyzések

A banki díjak csökkentésének kulcsa

A fogyasztók, amikor csatlakoznak egy bankhoz, nagy figyelmet fordítanak az általa kínált kamatlábra. Van azonban egy másik szempont is, amely szintén nagy jelentőségű: a jutalékok összegyűjtése. Számos jutalékot kell fizetnie az ügyfeleknek, mint a banki szolgáltatások fogyasztóinak. Egyszerűen az a tény, hogy tovább kell tartani…

Az új irodai formátum, a "coworking" előnyei és hátrányai

Ha sokan gondolkodnak egy munkahelyen, sokan elképzelnek egy irodát, ahol számos fülke, telefon cseng és egy nagy iroda áll a háttérben a főnök számára. A munkatársak azonban gyökeres változást jelentettek a munkaterületek terén. Nos, köszönöm a coworkingnak, amely a Tovább olvasom-ból származik…

Az állami nyugdíjrendszer finanszírozásának lehetséges alternatívái

Számos országban a születési arány rohamosan csökkent, olyannyira, hogy a populációs piramisok megfordultak. Más szavakkal, a népesség elöregedésével állunk szemben, amelyben nincs generációpótlás. Mindez visszahat az állami nyugdíjrendszer finanszírozására, mivel minél kisebb a lakosság száma,…