Szorzás származéka

A szorzás deriváltja megegyezik az első faktor szorzatával a második deriváltjával plusz a második tényező szorozva az első deriváltjával.

Matematikai szempontból a következőképpen foglalhatjuk össze:

A fenti képletben A 'jelentése A származéka x-hez viszonyítva, és ugyanaz B', amely B származéka X-hez képest.

Emlékeznünk kell arra, hogy a derivált matematikai függvény, amely lehetővé teszi számunkra egy (függő) változó változásának sebességének vagy sebességének kiszámítását. Ez akkor, ha egy változatot egy másik változóban (amely a független lenne) regisztrálják, amely hatással van rá.

Példák egy szorzás deriváltjára

A téma jobb megértése érdekében nézzünk meg néhány példát a szorzás deriváltjaira:

Most nézzünk meg egy másik példát kicsit nehezebben:

Népszerű Bejegyzések

Módszertani individualizmus

✅ Módszertani individualizmus | Mi ez, jelentése, fogalma és meghatározása. A módszertani individualizmus ismeretelméleti álláspont, amelyből azt állítják, hogy minden jelenség és ...…

Ciklikusan kiigazított többlet

✅ Ciklikusan kiigazított többlet | Mi ez, jelentése, fogalma és meghatározása. A ciklikusan kiigazított többlet a különbség a gazdaság teljes többlete között.…

Felhasználó - mi ez, definíció és fogalom

✅ Felhasználó | Mi ez, jelentése, fogalma és meghatározása. Teljes összefoglaló. Felhasználó az a személy, aki rendszeresen használ egy terméket vagy szolgáltatást. Ez...…